Microwave-prompted Rapid and Efficient Synthesis of Diacyl Thiosemicarbazides and Semicarbazides in Solvent and Catalyst Free Condition

Xi Cun WANG*, Zheng Jun QUAN, Man Gang WANG, Zheng LI

Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070

Abstract: Eighteen 1-aroyl-4-(2-iodobenzoyl)thiosemicarbazides and corresponding semicarbazides were synthesized in excellent yield under microwave irradiation in solvent and catalyst free condition.

Keywords: Microwave irradiation, 1,4-diaroyl thiosemicarbazides, 1,4-diaroyl semicarbazides, solvent-free synthesis.

Microwave-promoted solvent-free heterogeneous reactions are well known as environmentally benign methods, which usually provide improved selectivity, enhanced reaction rates, cleaner products and manipulative simplicity^{1,2}.

The chemistry of thiosemicarbazides and semicarbazides have attracted much attention in recent years due to their broad spectrum biological activities and as important intermediate in the preparations of corresponding semicarbazides, metal complexes and heterocyclic compounds³⁻⁵.

Generally, thiosemicarbazide was prepared by the reaction of isothiocyanate with hydrazide. Acyl isothiocyanate has been prepared by acyl chloride with ammonium thioacyanate by refluxing⁶⁻⁷ in aprotic solvent (such as acetonitrile and acetone) or by using tetrabutylammonium bromide as liquid-liquid phase-transfer catalyst⁸. Harrison⁹ has reported that polymer-supported thiocyanate was treated with benzoyl chloride in benzene to yield benzoyl isothiocyanate. Recently, benzoyl isothiocyanate on soluble polymer support has been synthesized from polymer-supported benzoyl chloride¹⁰⁻¹¹. In our precious work, isothiocyanates have been prepared quantitatively using solid-liquid phase-transfer catalysis PEG-400 at room temperature or irradiated by microwave¹²⁻¹⁴.

In continuation of our ongoing program to synthesize biologically active compounds¹¹⁻¹⁶ and develop benign and rapid strategy for organic transformation, we have explored an expeditious solvent-free method to the synthesis of 1-aroyl-4-(2-iodobenzoyl)-thiosemicarbazides under microwave irradiation (MWI) without catalyst (**Scheme 1**).

^{*} E-mail: wangxicun@nwnu.edu.cn

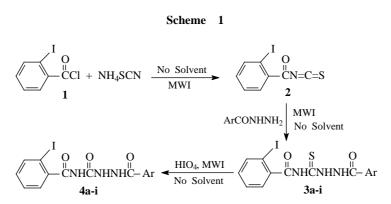


Table 1 Synthesis of 3a-i and 4a-i under MWI, solvent and catalyst free condition

Compd	Ar	m.p. (°C)	Yield (%) ^a		Elemental analysis (calcd.) (%)		
					С	Н	Ν
3a	C ₆ H ₅	159~160	88 ^b	94°	42.45(42.37)	2.93(2.84)	9.76(9.88)
3b	$4-CH_3OC_6H_4$	202~203	83 ^b	88 ^c	42.12(42.21)	2.98(3.10)	9.41(9.23)
3c	2-ClC ₆ H ₄	191~192	86 ^b	86 ^c	39.06(39.19)	2.30(2.41)	9.25(9.14)
3d	4-ClC ₆ H ₄	183~184	85 ^b	91°	39.11(39.19)	2.33(2.41)	9.24(9.14)
3e	$2-IC_6H_4$	264~265	84 ^b	86 ^c	32.73(32.69)	2.23(2.01)	7.58(7.62)
3f	4-BrC ₆ H ₄	241~242	85 ^b	88 ^c	35.66(35.74)	2.34(2.20)	8.46(8.34)
3g	$2-NO_2C_6H_4$	199~200	80^{b}	87°	38.24(38.31)	2.50(2.36)	11.87(11.91)
3h	$4-NO_2C_6H_4$	227~228	85 ^b	88 ^c	38.39(38.31)	2.41(2.36)	11.84(11.91)
3i	2-HOC ₆ H ₄	169~170	84 ^b	90 ^c	40.74(40.83)	2.62(2.74)	9.68(9.52)
4a	C ₆ H ₅	163~164	92 ^d		43.94(44.03)	2.94(2.96)	10.33(10.27)
4b	4-CH ₃ OC ₆ H ₄	220~221	94 ^d		43.87(43.75)	3.33(3.21)	9.61(9.57)
4c	2-ClC ₆ H ₄	209~210	93 ^d		40.69(40.61)	2.68(2.50)	9.37(9.47)
4d	4-ClC ₆ H ₄	201~202	96 ^d		40.58(40.61)	2.63(2.50)	9.59(9.47)
4 e	$2-IC_6H_4$	267~268	91 ^d		33.74(33.67)	2.12(2.07)	7.93(7.85)
4f	4-BrC ₆ H ₄	259~260	95 ^d		36.84(36.91)	2.19(2.27)	8.69(8.61)
4g	$2-NO_2C_6H_4$	241~242	90 ^d		39.73(39.67)	2.35(2.44)	12.41(12.36)
4h	$4-NO_2C_6H_4$	239~240	89 ^d		39.76(39.67)	2.48(2.44)	12.52(12.36)
4i	2-HOC ₆ H ₄	211~212	88^{d}		42.45(42.37)	2.76(2.84)	9.93(9.88)
	2-HOC ₆ H ₄			of catal	42.45(42.37)		

^aBased on aroylhydrazine; ^bIn the absence of catalyst; ^cIn the presence of PEG-400. ^dBased on thiosemicarbazides.

Treated 2-iodobenzoyl chloride 1 with ammonium thiocyanate under MWI, in solvent and catalyst free condition, gave 2-iodobenzoyl isothiocyanate 2. The crude compound could be reacted with aroyl hydrazines directly without purification affording 1-aroyl-4-(2-iodobenzoyl)thiosemicarbazides in excellent yields. These experiments confirmed that the phase transfer catalyst PEG-400 was not necessary in this reaction as in the traditional methods¹³⁻¹⁵ (**Table 1**).

According to our previous studies¹⁵⁻¹⁶ treatment of thiosemicarbazides with KIO₃ in water suspension was an efficient method for the synthesis of corresponding semicarbazides. Accordance with our previous work^{15, 16}, the thiosemicabazides **3a-i** can be efficiently converted into semicarbazides 4a-i in water suspension with KIO3 under microwave irradiation. The transformation of **3a-i** to **4a-i**, however, this reaction did not occur under MWI and solvent-free conditions with KIO3. It was interesting to note

Synthesis of Diacyl Thiosemicarbazides and Semicarbazides in Solvent and Catalyst Free Condition 1029

Compd	$IR (cm^{-1})$			¹ H NMR (DMSO-d ₆ , δ in ppm)
compu .	N-H	C=O	C=S	
3a	3171	1691	1180	12.36 (s, 1H, NH), 12.01 (s, 1H, NH), 10.90 (s, 1H, NH),
	3291			6.90-7.80 (m, 9H, Ar-H)
3b	3169	1696	1196	12.33 (s, 1H, NH), 11.97 (s, 1H, NH), 10.93 (s, 1H, NH),
	3269			7.12-7.86 (m, 8H, Ar-H), 3.41 (s, 3H, CH ₃)
3c	3190	1697	1182	12.42 (s, 1H, NH), 12.00 (s, 1H, NH), 10.99 (s, 1H, NH),
	3260			7.20-8.07 (m, 8H, Ar-H)
3d	3189	1687	1179	12.40 (s, 1H, NH), 12.03 (s, 1H, NH), 11.01 (s, 1H, NH),
	3271			7.13-8.01 (m, 8H, Ar-H)
3e	3167	1696	1180	12.44 (s, 1H, NH), 12.04 (s, 1H, NH), 11.03 (s, 1H, NH),
	3284	10/0	1100	7.30-8.21 (m, 8H, Ar-H)
3f	3197	1698	1176	12.38 (s, 1H, NH), 12.05 (s, 1H, NH), 10.97 (s, 1H, NH),
51	3290	1070	1170	7.21-8.13 (m, 8H, Ar-H)
2.4	3201	1685	1184	12.43 (s, 1H, NH), 12.14 (s, 1H, NH), 11.02 (s, 1H, NH),
3g	3269	1085	1164	12.45 (\$, 1H, NH), 12.14 (\$, 1H, NH), 11.02 (\$, 1H, NH), 7.32-8.21 (m, 8H, Ar-H)
3h	3191	1683	1182	12.45 (s, 1H, NH), 12.20 (s, 1H, NH), 11.05 (s, 1H, NH),
3i	3260 3169	1689	1185	7.26-8.30 (m, 8H, Ar-H) 13.01 (s, 1H, NH), 12.40 (s, 1H, NH), 11.31 (s, 1H, NH),
51	3284	1007	1105	10.28 (s, 1H, OH), 7.30-8.21 (m, 8H, Ar-H)
4a	3170	1692		12.19 (s, 1H, NH), 11.01 (s, 2H, NH), 6.93-7.81 (m, 9H,
	3251			Ar-H)
4b	3174	1696		12.18 (s, 1H, NH), 11.01 (s, 2H, NH), 7.08-7.91 (m, 8H,
	3270			Ar-H), 3.39 (s, 3H, CH ₃)
4 c	3189	1691		12.19 (s, 1H, NH), 11.08 (s, 2H, NH), 7.21-8.20 (m, 8H,
	3269			Ar-H)
4d	3190	1695		12.21 (s, 1H, NH), 11.13 (s, 2H, NH), 7.20-8.10 (m, 8H,
4e	3272	1696		Ar-H)
40	3191 3269	1090		12.20 (s, 1H, NH), 11.21 (s, 2H, NH), 7.25-8.19 (m, 8H, Ar-H)
4f	3209	1677		12.16 (s, 1H, NH), 11.10 (s, 2H, NH), 7.18-8.15 (m, 8H,
	3270	10//		Ar-H)
4g	3198	1686		12.25 (s, 1H, NH), 11.13 (s, 2H, NH), 7.29-8.23 (m, 8H,
	3272			Ar-H)
4h	3199	1645		12.29 (s, 1H, NH), 11.10 (s, 2H, NH), 7.30-8.28 (m, 8H,
	3270			Ar-H)
4 i	3200	1173		12.50 (s, 1H, NH), 11.48 (s, 2H, NH), 10.30 (s, 1H, OH),
	3290			7.09-8.15 (m, 8H, Ar-H)

Table 2IR and ¹H NMR Data of compounds 3a-i and 4a-i.

that $HIO_4 \cdot 2H_2O$ was a quite efficient reagent for the transformation of C=S to C=O under the same conditions to afford 1-aroyl-4-(2-iodobenzoyl)semicarbazides **4a-i**.

2-Iodobenzoyl chloride 1 (1 mmol) and ammonium thiocyanate (1.5 mmol) were mixed thoroughly in an agate mortar. The mixture was subsequently irradiated in a domestic microwave oven at 350W for 0.5 min periodically up to a total irradiation time of 5 min. After disappearance of 1 (monitored by TLC using ethyl acetate-benzene-ethyl ether 2:1:1 as eluent), the mixture was cooled to room temperature and aroyl hydrazine (0.95 mmol) was added and mixed thoroughly. Then the mixture was subjected to microwave irradiation (490 W) for 0.5 min periodically up to a total

Xi Cun WANG et al.

irradiation time of 3 min. After the completion of the reaction (monitored by TLC using acetone as eluent), the resulting mixture was washed with water (3×10 mL) and the obtained solid product was recrystallized from DMF-EtOH-H₂O (6:3:1) giving the pure product **3a-i**. **3a-i** (1 mmol) and $HIO_4 \cdot 2H_2O$ (1.5 mmol) were mixed thoroughly in an agate mortar and irradiated (490 W) in microwave oven for 3 min. After the reaction was completed (monitored by TLC using ethyl acetate-acetone-petroleum ether 2:1:1 as eluent), the reaction mixture was washed with water (3×10 mL) and the obtained solid product was recrystallized from DMF-EtOH-H₂O (6:4:1), giving the pure **4a-i** (Table 1, Table 2).

In summary, to our best knowledge, this is the first report on the synthesis of 1-aroyl-4-(2-iodobenzoyl)thiosemicarbazides and corresponding semicarbazides under solvent and catalyst free condition by MWI.

Acknowledgment

The authors thank the Scientific and Technological Innovation Engineering of Northwest Normal University (NWNU-KJCXGC-02-08), Natural Science Foundation of Gansu Province (ZS021-A25-006-Z) and Environmental Protection Foundation of Gansu Province (GH2003-19) for the financial support of this work.

References

- 1. S. Caddick, Tetrahedron, 1995, 51, 10403.
- S. A. Galema, Chem. Soc. Rev., 1997, 26, 233. 2
- 3. S. Rollas, S. Karaku, B. B. Durgun, M. Kiraz, H. Erdeniz, Il Farmaco, 1996, 51, 811.
- 4. N. Takeuchi, T. Kasama, R. Zkeda, et al., Chem. Pham. Bull., 1984, 32, 2249.
- 5. E. Palaska, G. Sahin, P. Kelicen, N. T. Durlu, G. Altinok, Farmaco, 2002, 57, 101.
- 6. I. B. Douglass, F. B. Dains, J. Am. Chem. Soc., 1934, 56, 719.
- 7. Z. Y. Zhang, L. M. Chen, X. M. Feng, Y. S. Du, Chem. J. Chin. Univ. (in Chinese), 1981, 2, 50.
- 8. W. P. Reeves, A. Simmons, J. J. A. Rudis, T. C. Bothwell, Synth. Commun., 1981, 11, 781.
- 9. C. R. Harrison, P. Hodge, Synthesis, 1980, 299.
- 10. Z. Chen, G. Yang, D. Wang, Synthesis, 2001, 2235.
- 11. Z. Li, J. K. Wang, X. C. Wang, Synth. Commun., 2003, 33, 3567.
- 12. X. C. Wang, T. B. Wei, Zh. Org. Khim., 1996, 32, 472.
- T. B. Wei, J. C. Chen, X. C. Wang, Y. M. Zhang, J. Chem. Research(s), 1995, 138.
 X. C. Wang, J. K. Wang, Z. Li, Chin. Chem. Lett., 2004, 15, 635.
- 15. Z. Li, Z. J. Quan, X. C. Wang, Chin. J. Org. Chem., 2003, 23, 822.
- 16. Z. Li, X. C. Wang, Y. X. Da, J. C. Chen, Synth. Commun., 2001, 31, 1433.

Received 21 September, 2004